Innovative ARTs and Informed Consent

Andrea Bonnicksen, Ph.D. Northern Illinois University

Topics addressed

- I. Protecting the interests of oocyte donors
- II. Making informed decisions when data are inconclusive
- III. Making informed decisions when interventions may result in inheritable modifications

I. Protecting the interests of oocyte donors

Sample guidelines for ART and oocyte donation

- Elements To Be Considered in Obtaining Informed Consent for ART (ASRM Practice Committee 1997)
- Guidelines for Oocyte Donation (ASRM Practice Committee 2002)
- Informed Consent and the Use of Gametes and Embryos for Research (ASRM Ethics Committee 1997)
- Financial Incentives in Recruitment of Oocyte Donors (ASRM Ethics Committee 2000)
- Repetitive Oocyte Donation (ASRM 2001)

Some topics covered in 2002 oocyte donation guidelines

- Indications for use
- Evaluation of recipient and recipient's partner
- Selection of donors (anonymous v. known, age, proven fertility, sharing of oocytes)
- Psychological evaluation
- Screening and testing of donors (risk factors identified)
- Payment
- Multiple donations
- Record-keeping, consent, legal consultation

Purposes of donation

- Oocytes for procreation
- Oocytes for research
- Ooplasm to assist procreation
 - Ooplasm transfer (OT)
 - 5-15% ooplasm injected to recipient egg
 - First birth 1997; ~ 30 births by 2002
 - On hold

Risk/benefit to donors

- Oocytes for procreation
 - Potential benefit (altruism): high
 - Potential emotional risk: high
 - Health risks
- Ooplasm to assist procreation
 - Potential benefit (altruism): medium
 - Potential emotional risk: low
 - Health risks

Donating for ooplasm transfer

- Compensation
 - "Payment should not be predicated on clinical outcome"
 - "Monetary compensation . . . should reflect the time, inconvenience, and physical and emotional demands and risks"
 - "Payments . . . should be fair and not so substantial that they become undue inducements that will lead donors to discount risks."

Potential limits on donation

- Fewer constraints than whole oocyte donation (e.g., inadvertent consanguineous mating)
- Health risks
- Age
- Previous motherhood
- Psychological counseling

Other issues

- Family pressures to donate
- Privacy protection
- Notification of adverse outcomes from testing
- Clarifying that will not be genetic parent
- Legal consultation

II. Making informed decisions when data about safety and efficacy are inconclusive

- 1. The health of children is at issue
- 2. Patients thought to be vulnerable
- 3. Patients often pay out of pocket
- 4. Animal data and ICSI
- 5. Research involving human embryos not publicly funded

Some questions to ask

- Will this pose risks to my child?
- Will this pose risks to me?
- Have benefits been documented?
- Have harmful effects been documented?
- Will this benefit someone with my condition?

Some questions to ask

- What is this clinic's experience with the procedure?
- What are alternatives to the procedure, including adoption and deciding not to treat?

Making decisions when data are inconclusive

- Access to clear and manageable information
- Access to neutral information
- Interpreting animal-based studies
- Understanding status of procedure
- Styles of decision-making involving risk
- Interactive consent process
- Deciding who pays

III. Making informed decisions when interventions may result in inheritable modifications

Two categories of inheritable modifications

- Alterations to nuclear DNA
 - Performed with animals
 - Not on immediate horizon for humans
- Alterations to cytoplasm (mtDNA)
 - Ooplasm transfer and heteroplasmy reported in at least 2 children
 - On hold

Differing perspectives on OT

- Permissive: should proceed with existing oversight mechanisms
- Cautionary: proceeding may eventually be possible with heightened oversight
- Prohibitive: should never proceed

Permissive:

- Inheritance of mtDNA not automatically troublesome
- Foreseeable benefits (broad)
- Is primarily a matter of parental autonomy
- Implication: consent may be given when safety and efficacy demonstrated

Cautionary:

- Inheritance of mtDNA troublesome
- Benefits are visualized (narrow)
- Societal and individual interests are balanced
- Implication: consent eventually may be given if conditions are met (data collection, new oversight body and/or IND process, public discussion)

Prohibitive:

- mtDNA crosses a line and sets the stage for nDNA alterations
- Is no clear benefit; less problematic alternatives available
- Societal interests outweigh individual choice
- Implication: consent to proceed may not be given by couples even if safety is assured

- Making informed decisions if OT proceeds under cautionary approach
 - Core informed consent guidelines
 - Guidelines when data inconclusive
 - Animal data across generations
 - Access to clear information about data reported in IND application
 - Emotions if child's health compromised

Building on informed consent

- Start with core informed consent guidelines
- Premium on decipherable information
- Study how patients perceive and act on risk
- Public/private data gathering and distribution (FCSRA model)